Created by:  University of Minnesota

  • Joseph A Konstan

    Taught by:  Joseph A Konstan, Distinguished McKnight Professor and Distinguished University Teaching Professor

    Computer Science and Engineering

  • Michael D. Ekstrand

    Taught by:  Michael D. Ekstrand, Assistant Professor

    Dept. of Computer Science, Boise State University
Basic Info
Language
English
How To PassPass all graded assignments to complete the course.
User Ratings
4.3 stars
Average User Rating 4.3See what learners said
Syllabus

FAQs
How It Works
Trabajo del curso
Trabajo del curso

Cada curso es como un libro de texto interactivo, con videos pregrabados, cuestionarios y proyectos.

Ayuda de tus compañeros
Ayuda de tus compañeros

Conéctate con miles de estudiantes y debate ideas y materiales del curso, y obtén ayuda para dominar los conceptos.

Certificados
Certificados

Obtén reconocimiento oficial por tu trabajo y comparte tu éxito con amigos, compañeros y empleadores.

Creators
University of Minnesota
The University of Minnesota is among the largest public research universities in the country, offering undergraduate, graduate, and professional students a multitude of opportunities for study and research. Located at the heart of one of the nation’s most vibrant, diverse metropolitan communities, students on the campuses in Minneapolis and St. Paul benefit from extensive partnerships with world-renowned health centers, international corporations, government agencies, and arts, nonprofit, and public service organizations.
Pricing
AuditarComprar curso
Accede a los materiales del curso

Available

Available

Accede a los materiales con calificación

Not available

Available

Recibe una calificación final

Not available

Available

Obtén un Certificado de curso para compartir

Not available

Available

Ratings and Reviews
Rated 4.3 out of 5 of 68 ratings

Great course, nice theory and interesting exercise with the sheets and making actual Java programs to implement the algorithms. I would love to see some more in-depth probability theory, and considerations about when the algorithms deviate from the theory, or connections to other theories, but I suppose the course is more accessible and interesting like this. The interviews are probably my favorite part!

Awesome as always, Joe and Michael rock. The interview with Brad Miller was stellar, felt like listening to the legends of rock-n-roll!

Loved it...many thanks Prof. Joe for bringing this content to Coursera

a great class, I learned some insight in these algorithms