About this Course
100% online

100% online

Start instantly and learn at your own schedule.
Flexible deadlines

Flexible deadlines

Reset deadlines in accordance to your schedule.
Intermediate Level

Intermediate Level

Hours to complete

Approx. 12 hours to complete

Suggested: Une semaine de cours, 8 à 10 heures par semaine...
Available languages

French

Subtitles: French, Portuguese (Brazilian), German, English, Spanish, Japanese...
100% online

100% online

Start instantly and learn at your own schedule.
Flexible deadlines

Flexible deadlines

Reset deadlines in accordance to your schedule.
Intermediate Level

Intermediate Level

Hours to complete

Approx. 12 hours to complete

Suggested: Une semaine de cours, 8 à 10 heures par semaine...
Available languages

French

Subtitles: French, Portuguese (Brazilian), German, English, Spanish, Japanese...

Syllabus - What you will learn from this course

Week
1
Hours to complete
7 minutes to complete

Introduction

Nous utiliserons l'outil TensorFlow pour rédiger des programmes de machine learning. Par conséquent, ce cours comporte une présentation de TensorFlow. Lors du premier cours, vous avez appris à transposer les problèmes d'une entreprise en problèmes de machine learning. Dans le deuxième cours, vous avez compris le fonctionnement pratique du machine learning, et appris à créer des ensembles de données appliqués au machine learning. Maintenant que vous avez toutes les données en main, vous êtes prêt à commencer la rédaction de programmes de machine learning....
Reading
2 videos (Total 7 min)
Video2 videos
Présentation de Qwiklabs5m
Hours to complete
3 hours to complete

Core TensorFlow

Nous vous présenterons les principaux composants de TensorFlow, et vous pourrez vous exercer, à travers des ateliers pratiques, à créer des programmes de machine learning. Vous pourrez rédiger une évaluation paresseuse et des programmes impératifs, puis les comparer, travailler avec des graphes, des sessions et des variables, et enfin déboguer les programmes TensorFlow....
Reading
19 videos (Total 72 min), 4 quizzes
Video19 videos
Qu'est-ce que TensorFlow ?2m
Avantages d'un graphe orienté5m
Hiérarchie de l'API TensorFlow3m
Évaluation paresseuse4m
Graphique et session4m
Évaluer un Tensor2m
Visualiser un graph2m
Tensors6m
Variables6m
Présentation de l'atelier : Écrire des programmes TensorFlow de bas niveau16s
Solution de l'atelier8m
Présentation5m
Problèmes de forme3m
Résoudre les problèmes de forme2m
Problèmes de type de données1m
Déboguer des programmes complets4m
Présentation : Déboguer des programmes complets15s
Démonstration : Déboguer des programmes complets3m
Quiz3 practice exercises
Qu'est-ce que TensorFlow ?2m
Graphe et session8m
Core TensorFlow20m
Week
2
Hours to complete
4 hours to complete

API Estimator

Au cours de ce module, nous allons vous présenter dans le détail l'API Estimator....
Reading
18 videos (Total 67 min), 4 quizzes
Video18 videos
API Estimator3m
Estimators prédéfinis5m
Démonstration : Modèle du prix des logements1m
Points de contrôle1m
Apprentissage avec des ensembles de données en mémoire2m
Présentation de l'atelier : API Estimator39s
Solution de l'atelier : API Estimator10m
Apprentissage avec de grands ensembles de données grâce à l'API Dataset8m
Présentation de l'atelier : Scaling de l'ingestion TensorFlow à l'aide du traitement par lot35s
Solution de l'atelier : Scaling de l'ingestion TensorFlow à l'aide du traitement par lot5m
Tâches de grande envergure, apprentissage distribué6m
Assurer la surveillance avec TensorBoard3m
Démonstration : UI TensorBoard28s
Fonctionnalité d'entrée de diffusion5m
Récapitulatif : API Estimator1m
Présentation de l'atelier : Créer un modèle TensorFlow d'apprentissage distribué avec l'API Estimator51s
Solution de l'atelier : Créer un modèle TensorFlow d'apprentissage distribué avec l'API Estimator7m
Quiz1 practice exercise
API Estimator18m
Week
3
Hours to complete
2 hours to complete

Effectuer le scaling des modèles TensorFlow avec CMLE

Nous allons voir comment transférer et entraîner votre modèle TensorFlow sur l'infrastructure gérée de GCP dédiée à l'entraînement et au déploiement de modèles de machine learning....
Reading
6 videos (Total 29 min), 2 quizzes
Video6 videos
Pourquoi Cloud Machine Learning Engine ?6m
Entraîner un modèle2m
Surveiller et déployer des tâches d'entraînement2m
Présentation de l'atelier : Scaling de TensorFlow avec Cloud Machine Learning Engine50s
Solution de l'atelier : Scaling de TensorFlow avec Cloud Machine Learning Engine16m
Quiz1 practice exercise
Cloud MLE10m
Hours to complete
2 minutes to complete

Récapitulatif

Voici un récapitulatif des sujets TensorFlow que nous avons abordés dans ce cours. Nous examinerons à nouveau le code Core TensorFlow et l'API Estimator, et nous finirons par effectuer le scaling de vos modèles de machine learning avec Cloud Machine Learning Engine....
Reading
1 video (Total 2 min)
Video1 video

About Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

About the Machine Learning with TensorFlow on Google Cloud Platform en Français Specialization

Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Quelles sont les cinq phases permettant de traiter un cas d'utilisation à l'aide du machine learning, et pourquoi chaque étape est-elle essentielle ? Pourquoi les réseaux de neurones sont-ils désormais si courants ? Comment définir un problème d'apprentissage supervisé et trouver une solution adaptée et généralisable à l'aide de la descente de gradient et d'une méthode pertinente de création d'ensembles de données ? Apprenez à créer des modèles de machine learning distribués qui pourront évoluer dans TensorFlow, à adapter l'entraînement de ces modèles pour bénéficier d'une évolutivité horizontale et à obtenir des prédictions très performantes. Convertissez les données brutes en caractéristiques de sorte que les processus de ML soient en mesure d'identifier les propriétés importantes dans les données et générez des insights qui ont du sens en rapport avec la problématique. Enfin, découvrez comment intégrer à la fois la combinaison de paramètres permettant d'obtenir des modèles précis et généralisés, et une connaissance de la théorie indispensable pour résoudre des types spécifiques de problèmes de ML. Vous expérimenterez le ML de bout en bout en commençant par créer une stratégie centrée sur le ML, puis en progressant dans le processus d'entraînement, d'optimisation et de production de modèles grâce à des ateliers pratiques faisant appel à Google Cloud Platform. >>> En vous inscrivant à cette spécialisation vous acceptez les conditions d'utilisation de Qwiklabs décrites dans la FAQ et disponibles à l'adresse: https://qwiklabs.com/terms_of_service <<<...
Machine Learning with TensorFlow on Google Cloud Platform en Français

Frequently Asked Questions

  • Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.

  • If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.

  • Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.

  • If you complete the course successfully, your electronic Course Certificate will be added to your Accomplishments page - from there, you can print your Course Certificate or add it to your LinkedIn profile.

  • This course is one of a few offered on Coursera that are currently available only to learners who have paid or received financial aid, when available.

More questions? Visit the Learner Help Center.