About this Course
100% online

100% online

Start instantly and learn at your own schedule.
Flexible deadlines

Flexible deadlines

Reset deadlines in accordance to your schedule.
Intermediate Level

Intermediate Level

Hours to complete

Approx. 5 hours to complete

Suggested: 11 hours/week...
Available languages

German

Subtitles: German, French, Portuguese (Brazilian), English, Spanish, Japanese...
100% online

100% online

Start instantly and learn at your own schedule.
Flexible deadlines

Flexible deadlines

Reset deadlines in accordance to your schedule.
Intermediate Level

Intermediate Level

Hours to complete

Approx. 5 hours to complete

Suggested: 11 hours/week...
Available languages

German

Subtitles: German, French, Portuguese (Brazilian), English, Spanish, Japanese...

Syllabus - What you will learn from this course

Week
1
Hours to complete
4 minutes to complete

Einführung

Dieser Kurs vermittelt Ihnen ML-Basiswissen, damit Sie die Terminologie kennenlernen, die wir während der Spezialisierung verwenden. Sie bekommen außerdem praktische Tipps und Hinweise zu Fallstricken von ML-Fachleuten bei Google. Am Ende nehmen Sie den Code und das Fachwissen für Ihre eigenen ML-Modelle mit....
Reading
1 video (Total 4 min)
Video1 video
Hours to complete
1 hour to complete

ML in der Praxis

In diesem Modul stellen wir einige der wichtigsten Arten maschinellen Lernens vor und sehen uns noch einmal die Entwicklung ML an. Sie können so schneller in die ML-Praxis einsteigen....
Reading
10 videos (Total 62 min), 1 quiz
Video10 videos
Betreutes Lernen5m
Regression und Klassifizierung11m
Kurzer Rückblick auf ML: Lineare Regression7m
Kurzer Rückblick auf ML: Perzeptron5m
Kurzer Rückblick auf ML: Neuronale Netzwerke7m
Kurzer Rückblick auf ML: Entscheidungsbäume5m
Kurzer Rückblick auf ML: Kernel-Methoden4m
Kurzer Rückblick auf ML: Random Forests4m
Kurzer Rückblick auf ML: Moderne neuronale Netzwerke8m
Quiz1 practice exercise
Modul-Quiz6m
Hours to complete
1 hour to complete

Optimierung

In diesem Modul gehen wir die Optimierung von ML-Modellen durch....
Reading
13 videos (Total 61 min), 1 quiz
Video13 videos
ML-Modelle definieren4m
Einführung in das Dataset "Natality"6m
Einführung in Verlustfunktionen6m
Gradientenverfahren5m
Fehlerbehebung bei einer Verlustkurve2m
Probleme mit ML-Modellen6m
Lab: Einführung in TensorFlow Playground6m
Lab: TensorFlow Playground für Fortgeschrittene3m
Lab: Mit neuronalen Netzwerken arbeiten6m
Fehlerbehebung bei einer Verlustkurve1m
Leistungsmesswerte3m
Wahrheitsmatrix5m
Quiz1 practice exercise
Modul-Quiz6m
Hours to complete
3 hours to complete

Generalisierung und Stichprobenerhebung

Jetzt ist es an der Zeit, eine recht seltsam anmutende Frage zu beantworten: Wann ist das genaueste ML-Modell nicht die beste Wahl? Wie wir im letzten Modul zur Optimierung angedeutet haben, erbringt ein Modell mit einem Verlustwert von 0 mit Ihrem Trainings-Dataset nicht automatisch auch mit realen Datasets ein gutes Ergebnis. ...
Reading
9 videos (Total 64 min), 3 quizzes
Video9 videos
Generalisierung und ML-Modelle6m
Wann das Modelltraining beendet werden sollte5m
Wiederholbare Beispiele in BigQuery erstellen6m
Demo: Datasets in BigQuery aufteilen8m
Einführung in das Lab1m
Lösungsübersicht für das Lab9m
Einführung in das Lab2m
Lösungsübersicht für das Lab23m
Quiz1 practice exercise
Modul-Quiz12m
Hours to complete
3 minutes to complete

Zusammenfassung

...
Reading
1 video (Total 3 min)

About Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

About the Machine Learning with TensorFlow on Google Cloud Platform auf Deutsch Specialization

>>> Mit Ihrer Teilnahme an dieser Spezialisierung stimmen Sie den Nutzungsbedingungen von Qwiklabs zu, die Sie in den FAQs und unter folgendem Link finden: https://qwiklabs.com/terms_of_service <<< *** Google Cloud und Kaggle möchten Sie einladen, an unserem New York City Taxitarif-Ratespielwettbewerb teilzunehmen, der gerade stattfindet. Weitere Informationen finden Sie unter: https://www.kaggle.com/c/new-york-city-taxi-fare-prediction*** Was ist maschinelles Lernen und welche Probleme lassen sich damit lösen? Was sind die fünf Phasen zur Umsetzung eines für ML geeigneten Anwendungsfalls und warum darf keine dieser Phasen übersprungen werden? Warum sind neuronale Netze gerade so beliebt? Wie können Sie ein Projekt für betreutes Lernen gestalten und mithilfe des Gradientenverfahrens und sinnvoll erstellten Datasets eine gute, generalisierbare Lösung finden? In diesem Kurs lernen Sie, verteilte Modelle für ML zu schreiben, die in TensorFlow skaliert werden, das Training dieser Modelle horizontal zu skalieren und leistungsstarke Vorhersagen zu erstellen. Wir gehen darauf ein, wie Sie Rohdaten so in Merkmale umwandeln, dass ML wichtige Eigenschaften dieser Daten erlernen kann und menschliche Einblicke in das Problem zulässt. Schließlich lernen Sie, die richtige Mischung aus Parametern zu verwenden, um präzise und generalisierte Modelle zu erstellen, und Sie erhalten eine Einführung in die Theorie zum Lösen bestimmter Arten von ML-Problemen. Auf diese Weise gewinnen Sie ein umfassendes Verständnis von ML. Zuerst erstellen Sie eine auf ML ausgerichtete Strategie. Dann fahren Sie mit Modelltraining, Optimierung und Produktentwicklung fort. Hierbei helfen Ihnen praxisorientierte Labs der Google Cloud Platform....
Machine Learning with TensorFlow on Google Cloud Platform auf Deutsch

Frequently Asked Questions

  • Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.

  • If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.

  • Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.

  • If you complete the course successfully, your electronic Course Certificate will be added to your Accomplishments page - from there, you can print your Course Certificate or add it to your LinkedIn profile.

  • This course is one of a few offered on Coursera that are currently available only to learners who have paid or received financial aid, when available.

More questions? Visit the Learner Help Center.