Created by:  University of Washington

  • Emily Fox

    Taught by:  Emily Fox, Amazon Professor of Machine Learning

    Statistics

  • Carlos Guestrin

    Taught by:  Carlos Guestrin, Amazon Professor of Machine Learning

    Computer Science and Engineering
Basic Info
Commitment6 weeks of study, 5-8 hours/week
Language
English
How To PassPass all graded assignments to complete the course.
User Ratings
4.8 stars
Average User Rating 4.8See what learners said
Syllabus

FAQs
How It Works
Задания курса
Задания курса

Каждый курс — это интерактивный учебник, который содержит видеоматериалы, тесты и проекты.

Помощь сокурсников
Помощь сокурсников

Общайтесь с тысячами других учащихся: обсуждайте идеи, материалы курса и помогайте друг другу осваивать новые понятия.

Сертификаты
Сертификаты

Получите документы о прохождении курсов и поделитесь своим успехом с друзьями, коллегами и работодателями.

Creators
University of Washington
Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world.
Pricing
Приобрести курсПрослушать
Получить доступ к материалам курса

Available

Available

Получить доступ к оцениваемым материалам курса

Available

Not available

Получить итоговую оценку

Available

Not available

Earn a shareable Course Certificate

Available

Not available

Ratings and Reviews
Rated 4.8 out of 5 of 3,051 ratings

I loved this specialization very much !!! Emily and Calors are always very passionate and humor. In this regression course, I have learned a lot of algorithms, which make me understand how the regression functions in the first course( Machine Learning Foundations: A Case Study Approach ) work. Especially, I could contruct a function now by myself. It is really really exciting !!! Emily makes a good job to do some visiualization to make the algorithms comprehensible. But this course is kind of difficult for me and sometimes I need to watch a video so many times to understand an algorithm.

it is a good contant and i learn more information such as

Simple linear regression, Multiple regressionAssessing , performanceRidge , regressionFeature selection & LassoNearest , neighbor & kernel regression

C

A great course! Thank you so much!