Chevron Left
Back to Probabilistic Graphical Models 1: Representation

Probabilistic Graphical Models 1: Representation, Stanford University

4.7
1,018 ratings
232 reviews

About this Course

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems. This course is the first in a sequence of three. It describes the two basic PGM representations: Bayesian Networks, which rely on a directed graph; and Markov networks, which use an undirected graph. The course discusses both the theoretical properties of these representations as well as their use in practice. The (highly recommended) honors track contains several hands-on assignments on how to represent some real-world problems. The course also presents some important extensions beyond the basic PGM representation, which allow more complex models to be encoded compactly....

Top reviews

By ST

Jul 13, 2017

Prof. Koller did a great job communicating difficult material in an accessible manner. Thanks to her for starting Coursera and offering this advanced course so that we can all learn...Kudos!!

By CM

Oct 23, 2017

The course was deep, and well-taught. This is not a spoon-feeding course like some others. The only downside were some "mechanical" problems (e.g. code submission didn't work for me).

Filter by:

225 Reviews

By Tomasz Limisiewicz

May 12, 2019

Great course! Lectures are clear and comprehensive. Quizzes really check knowledge and are challenging. In the programming assignments the main focus is put on implementation of PGM algorithms and not on technical aspects of Octave/Matlab. Some changes could be made in Programing Assignment 4 to make description and provided code easier to understand.

By Yue Shen

May 09, 2019

Great course!

By Anshuman Sahoo

May 08, 2019

I would recommend adding some supplemental reading material.

By Sumod K Mohan

May 06, 2019

The course contents and presentation is of very high quality. The assignments and quizzes are both challenging and very rewarding. The only minor qualm is that the programming assignment grader seems to have few issues. For one, MATLAB indexing is really hard to work with. Secondly, it doesn't test the answers fully in some cases. Like the case of OptimizeWithJointUtility, OptimizeLinearExpectations. My codes passed the grader but I was splitting to hair to figure out why my answers to quiz questions corresponding to programming assignment were wrong. Turned out that my code was incorrect for the two programming assignments and that was causing issues. Otherwise, really nice course. Thank you :).

By Chahat Chawla

May 04, 2019

lectures not good(i mean not detailed)

By Amine M'Charrak

Apr 30, 2019

The material is really important and helpful for many concepts of Machine Learning. Daphne Koller is very good at explaining complicated ideas in an intuitive way. The programming assignments are very relevant and cover many real-world application scenarios in medical diagnosis and testing. Unfortunately, programming assignments have many flaws. First, some scripts do not work and therefore it is necessary to manually adjust these in order to submit your assignment part by part. Second, the forum is almost dead, which means that is is difficult to get help once you are stuck at a problem. Most of the helpful posts are almost two years old. Third, often times questions in the quiz are very vague and not clearly formed which makes it difficult to answer the instructor's question. All in all, I think, that the course is worthwhile but nonetheless the course definitely needs some refurbishing and bugs in scripts need to be fixed.

By Vivek Gidla

Apr 27, 2019

Great course. some programming assignments are tough (not too nicely worded and automatic grader can be a bit annoying) but all in all, great course

By 郭玮

Apr 26, 2019

Really nice course, thank you!

By Phillip Wenig

Apr 08, 2019

Sometimes the questions weren't clear. But in general, I really like the course and the things I've learnt I am sure they are useful.

By Alexander Perusse

Apr 02, 2019

I really enjoyed the content of this course. Having been inspired by reading The Book of Why, I was looking for some formal language around Bayesian Networks and this course really fit the bill. My biggest piece of feedback is on the programming assignments. These really should be in Python. Octave is an okay choice, and I suspect might have to do with Andrew Ng original choice to use it for his own machine learning course. However, the data science community writ large uses Python and R, which is why Andrew switched to Python for his deep learning courses. I would recommend the programming assignment be updated so that they are more accessible to the data science community.