Chevron Left
Back to Introduction to Recommender Systems: Non-Personalized and Content-Based

Learner Reviews & Feedback for Introduction to Recommender Systems: Non-Personalized and Content-Based by University of Minnesota

4.5
399 ratings
76 reviews

About the Course

This course, which is designed to serve as the first course in the Recommender Systems specialization, introduces the concept of recommender systems, reviews several examples in detail, and leads you through non-personalized recommendation using summary statistics and product associations, basic stereotype-based or demographic recommendations, and content-based filtering recommendations. After completing this course, you will be able to compute a variety of recommendations from datasets using basic spreadsheet tools, and if you complete the honors track you will also have programmed these recommendations using the open source LensKit recommender toolkit. In addition to detailed lectures and interactive exercises, this course features interviews with several leaders in research and practice on advanced topics and current directions in recommender systems....

Top reviews

BS

Feb 13, 2019

One of the best courses I have taken on Coursera. Choosing Java for the lab exercises makes them inaccessible for many data scientists. Consider providing a Python version.

DP

Dec 08, 2017

Nice introduction to recommender systems for those who have never heard about it before. No complex mathematical formula (which can also be seen by some as a downside).

Filter by:

1 - 25 of 75 Reviews for Introduction to Recommender Systems: Non-Personalized and Content-Based

By Nicolás A

Jun 28, 2018

Too basic and too repetitive (the videos could be half as long)

By Rashid K

Jan 02, 2018

well one thing I am struggling with programming in JAVA. Would not it be handy to have option to do assignment using languages like python/R? which are basically language of choice for data scientists and also easy to have grasp on for newbies. one more thing some time I just get stuck and felt like now way out. I did not get any answer/help form posts on the forum .

By Akash S C

Jun 22, 2019

Good course for basic intro to recommender system. However, some basic problems - videos are too long and Java for programming assignment was a huge disappointment. i tried picking the lenskit assignment with java but decided to get rid of it and replicated the assignment in python instead. it was taking too much time to learn Java back which will never be used in regular work for data science. python or R should have been used for prog assignment. time to update the course.

By Hagay L

Jun 16, 2019

Overall a good course that teaches the basics for content based recommenders.

Would be great if the assignments were a bit more challenging, e.g.: work with large datasets (and not the tiny datasets used in the assignments)

Would also be good if we were provided papers of recent/notable research on the topic to read further.

By vibhor n

Jun 03, 2019

A good introduction to the basic concepts of recommender systems. Loved the idea of having excel work assignments. For someone just wanting a quick learning of the concepts doesn't have to go through all the Java stuff

By shayue

Apr 11, 2019

Really Good! I think it will be helpful to me and take a job for me!

By Joeri K

Mar 23, 2019

It would be nice to have a hierarchical overview of the recommender systems. It's easy to get lost which is a subcategory of which. Thanks for the course!

By

Feb 28, 2019

not so deep

By Jon H

Feb 14, 2019

The content of this course is solid. It's a good introduction to content based and non-personailzed recommender systems. However, the presentation is poor. The course is largely based around videos which appear to be single takes. Snappier, well edited videos would have been better and, as a result, I often found myself skimming the transcripts rather than watching the videos.

By Benjamin S S

Feb 13, 2019

One of the best courses I have taken on Coursera. Choosing Java for the lab exercises makes them inaccessible for many data scientists. Consider providing a Python version.

By Mustafa S

Feb 08, 2019

Great course

By ignacio v

Feb 04, 2019

done it by audit, thnks!!! great stuff guys... but should do some practice in python!

By Mai H S

Jan 20, 2019

good exercises & lectures

By Md. S R

Jan 05, 2019

The lecturer were very lengthy, at least for me. I find it difficult to concentrate.

By LI Z

Jan 01, 2019

Awesome lecture and demonstration.

Here are some suggestions, first I think this course may spend too much time on non-trivial parts and some parts can be neglected; second, the programming assignment lacks a lot of supplementary tutorial for people who are not familiar with Java and LensKit package.

By sagar s

Oct 04, 2018

Awesome. Worth it!

By Ankur S

Sep 25, 2018

Very informative, very well organized. Especially like the questions like "Which domain would this technique most likely to apply".

Some areas of improvement to consider

The overall pace of the content delivery in various lectures could be increased. Tends to get very slow at times

More hands on exercises would be useful

Programming exercise in Python or Python based frameworks would bee useful

By sidra n

Aug 15, 2018

I would like to have more detail and help for honors track especially for people like me who do not have much programming experience and want to learn how to implement recommender system. I am unable to solve the assignment and i still need some help. Would be great if the solutions of the honors track should be available to those who want to learn and not just for the sake of getting certificate

By tao L

Jul 22, 2018

I think I am on the right track to changing my career from java engineer from data scientist, this course is one of the best start point

By Tash B

Jun 27, 2018

Fantastic course. Lecturers have extensive experience in this field. Lectures include interviews with people who have successfully implemented recommender systems in their products or who are researching the permutations, challenges and extensions to recommender system development. Not only does the course provide the chance to build your own recommender systems (optional) but also highlights the complexities and opportunities for refining and improving recommendations. I highly recommend this course to anyone building recommendation systems.

By shailesh k p

Jun 22, 2018

I am very new to recommendation system and yet able to comprehend the lessons. The best thing is explaining the system with example. Walking through Amazon.com and explaining content based and collaborative filtering is easy to grasp.

By Rahul R

Jun 10, 2018

I think some of the interviews didn't really give me great insights. I know this is only an introduction, but I was expecting more fields than movies. I am overly critical though, all in all a very good way to understand recommendation systems.

By Алешин А Е

May 18, 2018

It would be better to make practice on Python.

By Wesley H

May 09, 2018

Great introduction to Recommender systems. Really got me thinking about how I could apply them.

By Biswa s

Mar 28, 2018

Good overview on the recommend-er system.