About this Course
54,355 recent views

100% online

Start instantly and learn at your own schedule.

Flexible deadlines

Reset deadlines in accordance to your schedule.

Advanced Level

This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics.

Approx. 31 hours to complete

Suggested: 4 weeks of study, 5-6 hours per week...

English

Subtitles: English

What you will learn

  • Check

    Understand the key methods for parameter and state estimation used for autonomous driving, such as the method of least-squares

  • Check

    Develop a model for typical vehicle localization sensors, including GPS and IMUs

  • Check

    Apply extended and unscented Kalman Filters to a vehicle state estimation problem

  • Check

    Apply LIDAR scan matching and the Iterative Closest Point algorithm

100% online

Start instantly and learn at your own schedule.

Flexible deadlines

Reset deadlines in accordance to your schedule.

Advanced Level

This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics.

Approx. 31 hours to complete

Suggested: 4 weeks of study, 5-6 hours per week...

English

Subtitles: English

Syllabus - What you will learn from this course

Week
1
2 hours to complete

Module 0: Welcome to Course 2: State Estimation and Localization for Self-Driving Cars

This module introduces you to the main concepts discussed in the course and presents the layout of the course. The module describes and motivates the problems of state estimation and localization for self-driving cars.

...
9 videos (Total 33 min), 3 readings
9 videos
Welcome to the Course3m
Meet the Instructor, Jonathan Kelly2m
Meet the Instructor, Steven Waslander5m
Meet Diana, Firmware Engineer2m
Meet Winston, Software Engineer3m
Meet Andy, Autonomous Systems Architect2m
Meet Paul Newman, Founder, Oxbotica & Professor at University of Oxford5m
The Importance of State Estimation1m
3 readings
Course Prerequisites: Knowledge, Hardware & Software15m
How to Use Discussion Forums15m
How to Use Supplementary Readings in This Course15m
7 hours to complete

Module 1: Least Squares

The method of least squares, developed by Carl Friedrich Gauss in 1795, is a well known technique for estimating parameter values from data. This module provides a review of least squares, for the cases of unweighted and weighted observations. There is a deep connection between least squares and maximum likelihood estimators (when the observations are considered to be Gaussian random variables) and this connection is established and explained. Finally, the module develops a technique to transform the traditional 'batch' least squares estimator to a recursive form, suitable for online, real-time estimation applications.

...
4 videos (Total 33 min), 3 readings, 3 quizzes
4 videos
Lesson 1 (Part 2): Squared Error Criterion and the Method of Least Squares6m
Lesson 2: Recursive Least Squares7m
Lesson 3: Least Squares and the Method of Maximum Likelihood8m
3 readings
Lesson 1 Supplementary Reading: The Squared Error Criterion and the Method of Least Squares45m
Lesson 2 Supplementary Reading: Recursive Least Squares30m
Lesson 3 Supplementary Reading: Least Squares and the Method of Maximum Likelihood30m
3 practice exercises
Lesson 1: Practice Quiz30m
Lesson 2: Practice Quiz30m
Module 1: Graded Quiz50m
Week
2
7 hours to complete

Module 2: State Estimation - Linear and Nonlinear Kalman Filters

Any engineer working on autonomous vehicles must understand the Kalman filter, first described in a paper by Rudolf Kalman in 1960. The filter has been recognized as one of the top 10 algorithms of the 20th century, is implemented in software that runs on your smartphone and on modern jet aircraft, and was crucial to enabling the Apollo spacecraft to reach the moon. This module derives the Kalman filter equations from a least squares perspective, for linear systems. The module also examines why the Kalman filter is the best linear unbiased estimator (that is, it is optimal in the linear case). The Kalman filter, as originally published, is a linear algorithm; however, all systems in practice are nonlinear to some degree. Shortly after the Kalman filter was developed, it was extended to nonlinear systems, resulting in an algorithm now called the ‘extended’ Kalman filter, or EKF. The EKF is the ‘bread and butter’ of state estimators, and should be in every engineer’s toolbox. This module explains how the EKF operates (i.e., through linearization) and discusses its relationship to the original Kalman filter. The module also provides an overview of the unscented Kalman filter, a more recently developed and very popular member of the Kalman filter family.

...
6 videos (Total 54 min), 5 readings, 1 quiz
6 videos
Lesson 2: Kalman Filter and The Bias BLUEs5m
Lesson 3: Going Nonlinear - The Extended Kalman Filter10m
Lesson 4: An Improved EKF - The Error State Extended Kalman Filter6m
Lesson 5: Limitations of the EKF7m
Lesson 6: An Alternative to the EKF - The Unscented Kalman Filter15m
5 readings
Lesson 1 Supplementary Reading: The Linear Kalman Filter45m
Lesson 2 Supplementary Reading: The Kalman Filter - The Bias BLUEs10m
Lesson 3 Supplementary Reading: Going Nonlinear - The Extended Kalman Filter45m
Lesson 4 Supplementary Reading: An Improved EKF - The Error State Kalman FIlter1h
Lesson 6 Supplementary Reading: An Alternative to the EKF - The Unscented Kalman Filter30m
Week
3
2 hours to complete

Module 3: GNSS/INS Sensing for Pose Estimation

To navigate reliably, autonomous vehicles require an estimate of their pose (position and orientation) in the world (and on the road) at all times. Much like for modern aircraft, this information can be derived from a combination of GPS measurements and inertial navigation system (INS) data. This module introduces sensor models for inertial measurement units and GPS (and, more broadly, GNSS) receivers; performance and noise characteristics are reviewed. The module describes ways in which the two sensor systems can be used in combination to provide accurate and robust vehicle pose estimates.

...
4 videos (Total 32 min), 3 readings, 1 quiz
4 videos
Lesson 2: The Inertial Measurement Unit (IMU)10m
Lesson 3: The Global Navigation Satellite Systems (GNSS)8m
Why Sensor Fusion?3m
3 readings
Lesson 1 Supplementary Reading: 3D Geometry and Reference Frames10m
Lesson 2 Supplementary Reading: The Inertial Measurement Unit (IMU)30m
Lesson 3 Supplementary Reading: The Global Navigation Satellite System (GNSS)15m
1 practice exercise
Module 3: Graded Quiz50m
Week
4
2 hours to complete

Module 4: LIDAR Sensing

LIDAR (light detection and ranging) sensing is an enabling technology for self-driving vehicles. LIDAR sensors can ‘see’ farther than cameras and are able to provide accurate range information. This module develops a basic LIDAR sensor model and explores how LIDAR data can be used to produce point clouds (collections of 3D points in a specific reference frame). Learners will examine ways in which two LIDAR point clouds can be registered, or aligned, in order to determine how the pose of the vehicle has changed with time (i.e., the transformation between two local reference frames).

...
4 videos (Total 48 min), 3 readings, 1 quiz
4 videos
Lesson 2: LIDAR Sensor Models and Point Clouds12m
Lesson 3: Pose Estimation from LIDAR Data17m
Optimizing State Estimation3m
3 readings
Lesson 1 Supplementary Reading: Light Detection and Ranging Sensors10m
Lesson 2 Supplementary Reading: LIDAR Sensor Models and Point Clouds10m
Lesson 3 Supplementary Reading: Pose Estimation from LIDAR Data30m
1 practice exercise
Module 4: Graded Quiz30m
Week
5
6 hours to complete

Module 5: Putting It together - An Autonomous Vehicle State Estimator

This module combines materials from Modules 1-4 together, with the goal of developing a full vehicle state estimator. Learners will build, using data from the CARLA simulator, an error-state extended Kalman filter-based estimator that incorporates GPS, IMU, and LIDAR measurements to determine the vehicle position and orientation on the road at a high update rate. There will be an opportunity to observe what happens to the quality of the state estimate when one or more of the sensors either 'drop out' or are disabled.

...
8 videos (Total 50 min), 2 readings, 1 quiz
8 videos
Lesson 2: Multisensor Fusion for State Estimation8m
Lesson 3: Sensor Calibration - A Necessary Evil9m
Lesson 4: Loss of One or More Sensors5m
The Challenges of State Estimation6m
Final Lesson: Project Overview3m
Final Project Solution [LOCKED]3m
Congratulations on Completing Course 2!2m
2 readings
Lesson 2 Supplementary Reading: Multisensor Fusion for State Estimation1h 30m
Lesson 3 Supplementary Reading: Sensor Calibration - A Neccessary Evil30m
4.6
11 ReviewsChevron Right

Top reviews from State Estimation and Localization for Self-Driving Cars

By RLApr 27th 2019

It provides a hand-on experience in implementing part of the localization process...interesting stuff!! Kind of time-consuming so be prepared.

By GHApr 29th 2019

one of best experiences. But the course requires a steep learning curve. The discussion forums are really helpful

Instructors

Avatar

Jonathan Kelly

Assistant Professor
Aerospace Studies
Avatar

Steven Waslander

Associate Professor
Aerospace Studies

About University of Toronto

Established in 1827, the University of Toronto is one of the world’s leading universities, renowned for its excellence in teaching, research, innovation and entrepreneurship, as well as its impact on economic prosperity and social well-being around the globe. ...

About the Self-Driving Cars Specialization

Be at the forefront of the autonomous driving industry. With market researchers predicting a $42-billion market and more than 20 million self-driving cars on the road by 2025, the next big job boom is right around the corner. This Specialization gives you a comprehensive understanding of state-of-the-art engineering practices used in the self-driving car industry. You'll get to interact with real data sets from an autonomous vehicle (AV)―all through hands-on projects using the open source simulator CARLA. Throughout your courses, you’ll hear from industry experts who work at companies like Oxbotica and Zoox as they share insights about autonomous technology and how that is powering job growth within the field. You’ll learn from a highly realistic driving environment that features 3D pedestrian modelling and environmental conditions. When you complete the Specialization successfully, you’ll be able to build your own self-driving software stack and be ready to apply for jobs in the autonomous vehicle industry. It is recommended that you have some background in linear algebra, probability, statistics, calculus, physics, control theory, and Python programming. You will need these specifications in order to effectively run the CARLA simulator: Windows 7 64-bit (or later) or Ubuntu 16.04 (or later), Quad-core Intel or AMD processor (2.5 GHz or faster), NVIDIA GeForce 470 GTX or AMD Radeon 6870 HD series card or higher, 8 GB RAM, and OpenGL 3 or greater (for Linux computers)....
Self-Driving Cars

Frequently Asked Questions

  • Once you enroll for a Certificate, you’ll have access to all videos, quizzes, and programming assignments (if applicable). Peer review assignments can only be submitted and reviewed once your session has begun. If you choose to explore the course without purchasing, you may not be able to access certain assignments.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

More questions? Visit the Learner Help Center.