Loading...

W1V1 General Introduction

Course video 1 of 68

The use of numerical methods to solve partial differential equations is motivated giving examples form Earth sciences. Concepts of discretization in space and time are introduced and the necessity to sample fields with sufficient accuracy is motivated (i.e. number of grid points per wavelength). Computational meshes are discussed and their power and restrictions to model complex geometries illustrated. The basics of parallel computers and parallel programming are discussed and their impact on realistic simulations. The specific partial differential equation used in this course to illustrate various numerical methods is presented: the acoustic wave equation. Some physical aspects of this equation are illustrated that are relevant to understand its solutions. Finally Jupyter notebooks are introduced that are used with Python programs to illustrate the implementation of the numerical methods.

About Coursera

Courses, Specializations, and Online Degrees taught by top instructors from the world's best universities and educational institutions.

Community
Join a community of 40 million learners from around the world
Certificate
Earn a skill-based course certificate to apply your knowledge
Career
Gain confidence in your skills and further your career