About this Specialization
100% online courses

100% online courses

Start instantly and learn at your own schedule.
Flexible Schedule

Flexible Schedule

Set and maintain flexible deadlines.
Intermediate Level

Intermediate Level

Hours to complete

Approx. 3 months to complete

Suggested 14 hours/week
Available languages

English

Subtitles: English...
100% online courses

100% online courses

Start instantly and learn at your own schedule.
Flexible Schedule

Flexible Schedule

Set and maintain flexible deadlines.
Intermediate Level

Intermediate Level

Hours to complete

Approx. 3 months to complete

Suggested 14 hours/week
Available languages

English

Subtitles: English...

How the Specialization Works

Take Courses

A Coursera Specialization is a series of courses that helps you master a skill. To begin, enroll in the Specialization directly, or review its courses and choose the one you'd like to start with. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. It’s okay to complete just one course — you can pause your learning or end your subscription at any time. Visit your learner dashboard to track your course enrollments and your progress.

Hands-on Project

Every Specialization includes a hands-on project. You'll need to successfully finish the project(s) to complete the Specialization and earn your certificate. If the Specialization includes a separate course for the hands-on project, you'll need to finish each of the other courses before you can start it.

Earn a Certificate

When you finish every course and complete the hands-on project, you'll earn a Certificate that you can share with prospective employers and your professional network.

how it works

There are 5 Courses in this Specialization

Course1

Introduction to battery-management systems

4.8
21 ratings
5 reviews
This course will provide you with a firm foundation in lithium-ion cell terminology and function and in battery-management-system requirements as needed by the remainder of the specialization. After completing this course, you will be able to: - List the major functions provided by a battery-management system and state their purpose - Match battery terminology to a list of definitions - Identify the major components of a lithium-ion cell and their purpose - Understand how a battery-management system “measures” current, temperature, and isolation, and how it controls contactors - Identify electronic components that can provide protection and specify a minimum set of protections needed - Compute stored energy in a battery pack - List the manufacturing steps of different types of lithium-ion cells and possible failure modes...
Course2

Equivalent Circuit Cell Model Simulation

3.3
3 ratings
In this course, you will learn the purpose of each component in an equivalent-circuit model of a lithium-ion battery cell, how to determine their parameter values from lab-test data, and how to use them to simulate cell behaviors under different load profiles. By the end of the course, you will be able to: - State the purpose for each component in an equivalent-circuit model - Compute approximate parameter values for a circuit model using data from a simple lab test - Determine coulombic efficiency of a cell from lab-test data - Use provided Octave/MATLAB script to compute open-circuit-voltage relationship for a cell from lab-test data - Use provided Octave/MATLAB script to compute optimized values for dynamic parameters in model - Simulate an electric vehicle to yield estimates of range and to specify drivetrain components - Simulate battery packs to understand and predict behaviors when there is cell-to-cell variation in parameter values...
Course3

Battery State-of-Charge (SOC) Estimation

5.0
1 ratings
In this course, you will learn how to implement different state-of-charge estimation methods and to evaluate their relative merits. By the end of the course, you will be able to: - Implement simple voltage-based and current-based state-of-charge estimators and understand their limitations - Explain the purpose of each step in the sequential-probabilistic-inference solution - Execute provided Octave/MATLAB script for a linear Kalman filter and evaluate results - Execute provided Octave/MATLAB script for state-of-charge estimation using an extended Kalman filter on lab-test data and evaluate results - Execute provided Octave/MATLAB script for state-of-charge estimation using an sigma-point Kalman filter on lab-test data and evaluate results - Implement method to detect and discard faulty voltage-sensor measurements...
Course4

Battery State-of-Health (SOH) Estimation

In this course, you will learn how to implement different state-of-health estimation methods and to evaluate their relative merits. By the end of the course, you will be able to: - Identify the primary degradation mechanisms that occur in lithium-ion cells and understand how they work - Execute provided Octave/MATLAB script to estimate total capacity using WLS, WTLS, and AWTLS methods and lab-test data, and to evaluate results - Compute confidence intervals on total-capacity estimates - Compute estimates of a cell’s equivalent-series resistance using lab-test data - Specify the tradeoffs between joint and dual estimation of state and parameters, and steps that must be taken to ensure robust estimates (honors)...

Instructor

Gregory Plett

Professor
Electrical and Computer Engineering

About University of Colorado System

The University of Colorado is a recognized leader in higher education on the national and global stage. We collaborate to meet the diverse needs of our students and communities. We promote innovation, encourage discovery and support the extension of knowledge in ways unique to the state of Colorado and beyond....

Frequently Asked Questions

  • Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.

  • This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.

  • This Specialization doesn't carry university credit, but some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • The standard version of this specialization is 20 weeks in duration. The honors track requires an additional 4 weeks of study.

  • This is a graduate-level specialization that assumes that learners already hold a technical undergraduate degree: a Bachelor's degree in Electrical Engineering, Computer Engineering, or Mechanical Engineering or a Bachelor's degree in a closely related engineering discipline plus undergraduate-level competency in the following areas: Math (differential and integral calculus, linear algebra, and differential equations), Science (calculus-based physics and general chemistry), and Engineering (linear circuits, electronics, and linear systems)

  • The courses are designed to be taken in order, from Course 1 through Course 5. Course 1 gives a broad overview, background concepts, and context for the others; Course 2 is a strong prerequisite for the remaining courses since it describes the mathematical and programming frameworks that will be used; Course 3 includes topics in random variables that are important for Course 4. Course 5 is the only exception, and may be taken any time after completing Course 2.

  • After completing the specialization, you will be able to: use laboratory data to create mathematical models of battery cells, and use these models to implement state-of-charge, state-of-health, available power (state-of-function), available energy, and balancing algorithms.

More questions? Visit the Learner Help Center.