About this Specialization
100% online courses

100% online courses

Start instantly and learn at your own schedule.
Flexible Schedule

Flexible Schedule

Set and maintain flexible deadlines.
Intermediate Level

Intermediate Level

Hours to complete

Approx. 6 months to complete

Suggested 6 hours/week
Available languages

English

Subtitles: English, Korean...

Skills you will gain

Data Clustering AlgorithmsText MiningData Visualization (DataViz)Data Mining
100% online courses

100% online courses

Start instantly and learn at your own schedule.
Flexible Schedule

Flexible Schedule

Set and maintain flexible deadlines.
Intermediate Level

Intermediate Level

Hours to complete

Approx. 6 months to complete

Suggested 6 hours/week
Available languages

English

Subtitles: English, Korean...

How the Specialization Works

Take Courses

A Coursera Specialization is a series of courses that helps you master a skill. To begin, enroll in the Specialization directly, or review its courses and choose the one you'd like to start with. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. It’s okay to complete just one course — you can pause your learning or end your subscription at any time. Visit your learner dashboard to track your course enrollments and your progress.

Hands-on Project

Every Specialization includes a hands-on project. You'll need to successfully finish the project(s) to complete the Specialization and earn your certificate. If the Specialization includes a separate course for the hands-on project, you'll need to finish each of the other courses before you can start it.

Earn a Certificate

When you finish every course and complete the hands-on project, you'll earn a Certificate that you can share with prospective employers and your professional network.

how it works

There are 6 Courses in this Specialization

Course1

Data Visualization

4.5
643 ratings
158 reviews
Learn the general concepts of data mining along with basic methodologies and applications. Then dive into one subfield in data mining: pattern discovery. Learn in-depth concepts, methods, and applications of pattern discovery in data mining. We will also introduce methods for pattern-based classification and some interesting applications of pattern discovery. This course provides you the opportunity to learn skills and content to practice and engage in scalable pattern discovery methods on massive transactional data, discuss pattern evaluation measures, and study methods for mining diverse kinds of patterns, sequential patterns, and sub-graph patterns....
Course2

Text Retrieval and Search Engines

4.4
400 ratings
87 reviews
Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. Text data are unique in that they are usually generated directly by humans rather than a computer system or sensors, and are thus especially valuable for discovering knowledge about people’s opinions and preferences, in addition to many other kinds of knowledge that we encode in text. This course will cover search engine technologies, which play an important role in any data mining applications involving text data for two reasons. First, while the raw data may be large for any particular problem, it is often a relatively small subset of the data that are relevant, and a search engine is an essential tool for quickly discovering a small subset of relevant text data in a large text collection. Second, search engines are needed to help analysts interpret any patterns discovered in the data by allowing them to examine the relevant original text data to make sense of any discovered pattern. You will learn the basic concepts, principles, and the major techniques in text retrieval, which is the underlying science of search engines....
Course3

Text Mining and Analytics

4.4
325 ratings
89 reviews
This course will cover the major techniques for mining and analyzing text data to discover interesting patterns, extract useful knowledge, and support decision making, with an emphasis on statistical approaches that can be generally applied to arbitrary text data in any natural language with no or minimum human effort. Detailed analysis of text data requires understanding of natural language text, which is known to be a difficult task for computers. However, a number of statistical approaches have been shown to work well for the "shallow" but robust analysis of text data for pattern finding and knowledge discovery. You will learn the basic concepts, principles, and major algorithms in text mining and their potential applications....
Course4

Pattern Discovery in Data Mining

4.3
159 ratings
33 reviews
Learn the general concepts of data mining along with basic methodologies and applications. Then dive into one subfield in data mining: pattern discovery. Learn in-depth concepts, methods, and applications of pattern discovery in data mining. We will also introduce methods for data-driven phrase mining and some interesting applications of pattern discovery. This course provides you the opportunity to learn skills and content to practice and engage in scalable pattern discovery methods on massive transactional data, discuss pattern evaluation measures, and study methods for mining diverse kinds of patterns, sequential patterns, and sub-graph patterns....

Instructors

Avatar

John C. Hart

Professor of Computer Science
Department of Computer Science
Avatar

ChengXiang Zhai

Professor
Department of Computer Science
Avatar

Jiawei Han

Abel Bliss Professor
Department of Computer Science
Graduation Cap

Start working towards your Master's degree

This specialization is part of the 100% online Master in Computer Science from University of Illinois at Urbana-Champaign. If you are admitted to the full program, your courses count towards your degree learning.

About University of Illinois at Urbana-Champaign

The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs. ...

Frequently Asked Questions

  • Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.

  • This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.

  • This Specialization doesn't carry university credit, but some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • Time to completion can vary widely based on your schedule. Most learners are able to complete the Specialization in 4-5 months.

  • Each course in the Specialization is offered on a regular schedule with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over.

  • Comfortable with computer programming in multiple programming languages

    Basic knowledge of probability and statistics

  • It is recommended that the courses in the Specialization be taken in the order outlined. In the Capstone Project, you will have the opportunity to synthesize your learning in all the courses and apply your combined skills in a final project.

  • At completion of this Specialization in Data Mining, you will (1) know the basic concepts in pattern discovery and clustering in data mining, information retrieval, text analytics, and visualization, (2) understand the major algorithms for mining both structured and unstructured text data, and (3) be able to apply the learned algorithms to solve real-world data mining problems.

More questions? Visit the Learner Help Center.