About this Specialization

100% online courses

Start instantly and learn at your own schedule.

Flexible Schedule

Set and maintain flexible deadlines.

Intermediate Level

Approx. 1 month to complete

Suggested 13 hours/week

French

Subtitles: French, Portuguese (Brazilian), German, English, Spanish, Japanese...

100% online courses

Start instantly and learn at your own schedule.

Flexible Schedule

Set and maintain flexible deadlines.

Intermediate Level

Approx. 1 month to complete

Suggested 13 hours/week

French

Subtitles: French, Portuguese (Brazilian), German, English, Spanish, Japanese...

How the Specialization Works

Take Courses

A Coursera Specialization is a series of courses that helps you master a skill. To begin, enroll in the Specialization directly, or review its courses and choose the one you'd like to start with. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. It’s okay to complete just one course — you can pause your learning or end your subscription at any time. Visit your learner dashboard to track your course enrollments and your progress.

Hands-on Project

Every Specialization includes a hands-on project. You'll need to successfully finish the project(s) to complete the Specialization and earn your certificate. If the Specialization includes a separate course for the hands-on project, you'll need to finish each of the other courses before you can start it.

Earn a Certificate

When you finish every course and complete the hands-on project, you'll earn a Certificate that you can share with prospective employers and your professional network.

how it works

There are 5 Courses in this Specialization

Course1

How Google does Machine Learning en Français

Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Google adopte une approche particulière du machine learning qui s'appuie non seulement sur les données, mais également sur la logique. Nous expliquerons l'intérêt que présente cette conception pour la création d'un pipeline de modèles de ML. Ensuite, nous examinerons les cinq phases permettant de convertir un cas d'utilisation devant être traité à l'aide du machine learning et étudierons pourquoi chaque étape est importante. Enfin, nous identifierons les biais que le machine learning est susceptible d'amplifier et apprendrons à les repérer....
Course2

Launching into Machine Learning en Français

Après avoir présenté un historique du machine learning, nous étudierons pourquoi les réseaux de neurones sont aujourd'hui parfaitement adaptés à diverses problématiques. Nous apprendrons ensuite à définir un problème d'apprentissage supervisé et à trouver une solution adaptée à l'aide d'une descente de gradient. Ce processus implique la création d'ensembles de données permettant la généralisation. Nous examinerons comment procéder à cette opération de façon reproductible de sorte que l'expérimentation soit possible. Objectifs du cours : Déterminer pourquoi le deep learning est désormais si courant Optimiser et évaluer des modèles en utilisant des fonctions de perte et des statistiques de performances Corriger les problèmes courants liés au machine learning Créer des ensembles de données de formation, d'évaluation et de test reproductibles et évolutifs...
Course3

Intro to TensorFlow en Français

Ce cours présente l'approche TensorFlow de bas niveau et dresse la liste des concepts et API nécessaires pour la rédaction de modèles de machine learning distribués. Nous verrons comment appliquer une évolutivité horizontale à l'entraînement d'un modèle TensorFlow afin d'offrir des prédictions très pertinentes avec Cloud Machine Learning Engine. Objectifs du cours : Créer des modèles de machine learning dans TensorFlow Utiliser les bibliothèques TensorFlow pour résoudre des problèmes numériques Résoudre les problèmes et déboguer les erreurs de code courantes sur TensorFlow Utiliser tf.estimator pour créer, entraîner et évaluer un modèle de ML Entraîner et déployer les modèles de ML avant de les envoyer en production à grande échelle avec Cloud ML Engine...
Course4

Feature Engineering en Français

Vous souhaitez découvrir comment améliorer la précision de vos modèles de machine learning (ML) ? Vous voulez identifier les colonnes de données offrant les caractéristiques les plus utiles ? Bienvenue dans le cours Feature Engineering on Google Cloud Platform (Extraction de caractéristiques sur Google Cloud Platform). Nous vous expliquerons ce qui distingue les bonnes caractéristiques des mauvaises, puis nous vous montrerons comment prétraiter et transformer vos caractéristiques afin d'optimiser leur efficacité dans vos modèles. Des ateliers interactifs vous permettront de mettre en pratique ce que vous avez appris. Vous sélectionnerez vous-même des caractéristiques, puis les prétraiterez dans Google Cloud Platform. Nos formateurs vous aideront à comprendre les solutions de code. Ces solutions seront accessibles à tous, et pourront vous servir de référence en cas de besoin lorsque vous travaillerez sur vos propres projets de ML....

About Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

Frequently Asked Questions

  • Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.

  • This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.

  • This Specialization doesn't carry university credit, but some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

More questions? Visit the Learner Help Center.