About this Specialization
100% online courses

100% online courses

Start instantly and learn at your own schedule.
Flexible Schedule

Flexible Schedule

Set and maintain flexible deadlines.
Intermediate Level

Intermediate Level

Hours to complete

Approx. 1 month to complete

Suggested 12 hours/week
Available languages

English

Subtitles: English, French, Portuguese (Brazilian), German, Spanish, Japanese...
100% online courses

100% online courses

Start instantly and learn at your own schedule.
Flexible Schedule

Flexible Schedule

Set and maintain flexible deadlines.
Intermediate Level

Intermediate Level

Hours to complete

Approx. 1 month to complete

Suggested 12 hours/week
Available languages

English

Subtitles: English, French, Portuguese (Brazilian), German, Spanish, Japanese...

How the Specialization Works

Take Courses

A Coursera Specialization is a series of courses that helps you master a skill. To begin, enroll in the Specialization directly, or review its courses and choose the one you'd like to start with. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. It’s okay to complete just one course — you can pause your learning or end your subscription at any time. Visit your learner dashboard to track your course enrollments and your progress.

Hands-on Project

Every Specialization includes a hands-on project. You'll need to successfully finish the project(s) to complete the Specialization and earn your certificate. If the Specialization includes a separate course for the hands-on project, you'll need to finish each of the other courses before you can start it.

Earn a Certificate

When you finish every course and complete the hands-on project, you'll earn a Certificate that you can share with prospective employers and your professional network.

how it works

There are 5 Courses in this Specialization

Course1

How Google does Machine Learning 日本語版

4.8
4 ratings
1 reviews
機械学習とはどのようなもので、どのような問題の解決に役立つのでしょうか。Google では機械学習について、データだけでなくロジックの面からも独自の視点で考えています。こうした捉え方が、機械学習モデルのパイプライン構築を考えるうえでなぜ有効なのか説明します。次に、候補となるユースケースを機械学習で学習できる形に変換する 5 つの段階について説明し、こうした段階を省略しないことの重要性について論じます。最後に、機械学習が助長する可能性のある偏見の認識と、それを識別する方法について説明します。...
Course2

Launching into Machine Learning 日本語版

4.3
3 ratings
機械学習の歴史を皮切りに、ニューラル ネットワークがさまざまな問題でうまく機能している理由をご紹介します。次に、教師あり学習の問題を設定し、勾配降下法を使用して適切な解決策を見つける方法について説明します。これには、一般化が可能になるデータセットの作成も含まれます。実験に対応するため、データセットを繰り返し作成できる方法について解説します。 コースの目標: ディープ ラーニングが注目を集めている理由を知る 損失関数とパフォーマンス指標を使用して、モデルを最適化および評価する 機械学習で発生しがちな一般的な問題を軽減する 再現可能なスケーラブル トレーニング用、評価用、テスト用データセットを作成する...
Course3

Intro to TensorFlow 日本語版

4.0
2 ratings
低レベルの TensorFlow を導入し、分散型機械学習モデルを作成するために必要なコンセプトと API を開発します。TensorFlow モデルのトレーニングをスケールアウトし、Cloud Machine Learning Engine を使った高性能な予測を提供する方法について説明します。 コースの目的: TensorFlow で機械学習モデルを作成する TensorFlow ライブラリを使用して数値の問題を解決する TensorFlow コードによくある問題のトラブルシューティングとデバッグを行う tf.estimator を使用して ML モデルを作成、トレーニング、評価する Cloud ML Engine を使用して ML モデルの大規模なトレーニング、デプロイ、本稼働を行う...
Course4

Feature Engineering 日本語版

4.0
2 ratings
機械学習モデルの精度を高める方法や、特に有効な特徴を抽出するためのデータ列の見極め方を知りたい人におすすめのコースです。Feature Engineering on Google Cloud Platform では、良い特徴と悪い特徴の要素について、また、機械学習モデルで最適に使用できるように、特徴を前処理して変換する方法についても取り上げます。 このコースでは実践演習として、インタラクティブなラボを使用し、Google Cloud Platform 内で特徴を選択して前処理を行います。インストラクターが解答のコードについて説明します。解答のコードは、今後、皆さんが自身の ML プロジェクトに取り組む際に参照できるよう、一般公開される予定です。...

About Google Cloud

We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success....

Frequently Asked Questions

  • Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.

  • This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.

  • This Specialization doesn't carry university credit, but some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • コースを修了後または、途中でコースを終了したい場合は、コースの購読を終了する必要があります。購読を終了しないと、引き続き課金が発生します。

    コースの購読を終了するためには、画面右上のメニューから”購入済みコース”を選択し、購読を終了したいコースの”購読を終了(Cancel subscription) ”をクリックしてください。

More questions? Visit the Learner Help Center.