About this Specialization
100% online courses

100% online courses

Start instantly and learn at your own schedule.
Flexible Schedule

Flexible Schedule

Set and maintain flexible deadlines.
Intermediate Level

Intermediate Level

Hours to complete

Approx. 12 months to complete

Suggested 5 hours/week
Available languages

English

Subtitles: English...

Skills you will gain

EnergyPower Electronics DesignPower ElectronicsElectronic Circuits
100% online courses

100% online courses

Start instantly and learn at your own schedule.
Flexible Schedule

Flexible Schedule

Set and maintain flexible deadlines.
Intermediate Level

Intermediate Level

Hours to complete

Approx. 12 months to complete

Suggested 5 hours/week
Available languages

English

Subtitles: English...

How the Specialization Works

Take Courses

A Coursera Specialization is a series of courses that helps you master a skill. To begin, enroll in the Specialization directly, or review its courses and choose the one you'd like to start with. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. It’s okay to complete just one course — you can pause your learning or end your subscription at any time. Visit your learner dashboard to track your course enrollments and your progress.

Hands-on Project

Every Specialization includes a hands-on project. You'll need to successfully finish the project(s) to complete the Specialization and earn your certificate. If the Specialization includes a separate course for the hands-on project, you'll need to finish each of the other courses before you can start it.

Earn a Certificate

When you finish every course and complete the hands-on project, you'll earn a Certificate that you can share with prospective employers and your professional network.

how it works

There are 6 Courses in this Specialization

Course1

Introduction to Power Electronics

4.8
1,250 ratings
308 reviews
This course introduces the basic concepts of switched-mode converter circuits for controlling and converting electrical power with high efficiency. Principles of converter circuit analysis are introduced, and are developed for finding the steady state voltages, current, and efficiency of power converters. Assignments include simulation of a dc-dc converter, analysis of an inverting dc-dc converter, and modeling and efficiency analysis of an electric vehicle system and of a USB power regulator. After completing this course, you will: ● Understand what a switched-mode converter is and its basic operating principles ● Be able to solve for the steady-state voltages and currents of step-down, step-up, inverting, and other power converters ● Know how to derive an averaged equivalent circuit model and solve for the converter efficiency A basic understanding of electrical circuit analysis is an assumed prerequisite for this course....
Course2

Converter Circuits

4.9
516 ratings
93 reviews
This course introduces more advanced concepts of switched-mode converter circuits. Realization of the power semiconductors in inverters or in converters having bidirectional power flow is explained. Power diodes, power MOSFETs, and IGBTs are explained, along with the origins of their switching times. Equivalent circuit models are refined to include the effects of switching loss. The discontinuous conduction mode is described and analyzed. A number of well-known converter circuit topologies are explored, including those with transformer isolation. The homework assignments include a boost converter and an H-bridge inverter used in a grid-interfaced solar inverter system, as well as transformer-isolated forward and flyback converters. After completing this course, you will: ● Understand how to implement the power semiconductor devices in a switching converter ● Understand the origins of the discontinuous conduction mode and be able to solve converters operating in DCM ● Understand the basic dc-dc converter and dc-ac inverter circuits ● Understand how to implement transformer isolation in a dc-dc converter, including the popular forward and flyback converter topologies. Completion of the first course Introduction to Power Electronics is the assumed prerequisite for this course....
Course3

Converter Control

4.8
325 ratings
66 reviews
This course teaches how to design a feedback system to control a switching converter. The equivalent circuit models derived in the previous courses are extended to model small-signal ac variations. These models are then solved, to find the important transfer functions of the converter and its regulator system. Finally, the feedback loop is modeled, analyzed, and designed to meet requirements such as output regulation, bandwidth and transient response, and rejection of disturbances. Upon completion of this course, you will be able to design and analyze the feedback systems of switching regulators. This course assumes prior completion of courses Introduction to Power Electronics and Converter Circuits....
Course4

Advanced Converter Control Techniques

4.8
237 ratings
45 reviews
This course covers advanced converter control techniques, including averaged-switch modeling and Spice simulations, modeling and design of peak current mode and average current mode controlled converters, as well as an introduction to control of single-phase ac grid tied rectifiers and inverters. Design and simulation examples include wide bandwidth point-of-load voltage regulators, low-harmonic power-factor-correction rectifiers, and grid-tied inverters for solar photovoltaic power systems. Upon completion of the course, you will be able to model, design control loops, and simulate state-of-the-art pulse-width modulated (PWM) dc-dc converters, dc-ac inverters, ac-dc rectifiers, and other power electronics systems. This course assumes prior completion of Introduction to Power Electronics, Converter Circuits, and Converter Control...

Instructors

Avatar

Dr. Robert Erickson

Professor
Electrical, Computer, and Energy Engineering
Avatar

Dr. Dragan Maksimovic

Charles V. Schelke Endowed Professor
Electrical, Computer and Energy Engineering
Avatar

Dr. Khurram Afridi

Assistant Professor
Electrical, Computer and Energy Engineering

About University of Colorado Boulder

CU-Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies....

Frequently Asked Questions

  • Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.

  • This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.

  • This Specialization doesn't carry university credit, but some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • The specialization is designed to be taken over 24 weeks. Each course is 3-5 weeks in length.

  • The first course of the specialization, Introduction to Power Electronics, will begin every four weeks.

  • Knowledge of circuits and electrical engineering fundamentals at the level of an undergraduate EE major is assumed.

  • Generally yes. Each course builds upon the knowledge gained in the previous course.

  • Students completing this specialization will be able to:

    ●Analyze, model and simulate switched-mode power converters

    ● Design converters, including magnetic components, based on efficiency, power density and cost trade-off targets.

    ● Design high-performance voltage-mode and current-mode control loops

    ● Design a complete state-of-the-art power electronics system in a capstone project

  • This course will target three types of learners: Working engineers needing training in the specialization of power electronics, undergraduate and graduate students who wish to learn about power electronics, and other learners having curiosity about power electronics and its applications such as renewable energy, energy efficiency, and powering computer or mobile electronics.

  • Yes. If you completed Introduction to Power Electronics before January 2016, you’ll receive equivalent credit for the first three courses in this Specialization: Introduction to Power Electronics, Converter Circuits and Converter Control.

More questions? Visit the Learner Help Center.