About this Specialization
100% online courses

100% online courses

Start instantly and learn at your own schedule.
Flexible Schedule

Flexible Schedule

Set and maintain flexible deadlines.
Intermediate Level

Intermediate Level

Hours to complete

Approx. 2 months to complete

Suggested 8 hours/week
Available languages

English

Subtitles: English...

Skills you will gain

EvaluationFactorizationRecommender SystemsCollaboration
100% online courses

100% online courses

Start instantly and learn at your own schedule.
Flexible Schedule

Flexible Schedule

Set and maintain flexible deadlines.
Intermediate Level

Intermediate Level

Hours to complete

Approx. 2 months to complete

Suggested 8 hours/week
Available languages

English

Subtitles: English...

How the Specialization Works

Take Courses

A Coursera Specialization is a series of courses that helps you master a skill. To begin, enroll in the Specialization directly, or review its courses and choose the one you'd like to start with. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. It’s okay to complete just one course — you can pause your learning or end your subscription at any time. Visit your learner dashboard to track your course enrollments and your progress.

Hands-on Project

Every Specialization includes a hands-on project. You'll need to successfully finish the project(s) to complete the Specialization and earn your certificate. If the Specialization includes a separate course for the hands-on project, you'll need to finish each of the other courses before you can start it.

Earn a Certificate

When you finish every course and complete the hands-on project, you'll earn a Certificate that you can share with prospective employers and your professional network.

how it works

There are 5 Courses in this Specialization

Course1

Introduction to Recommender Systems: Non-Personalized and Content-Based

4.5
336 ratings
66 reviews
This course, which is designed to serve as the first course in the Recommender Systems specialization, introduces the concept of recommender systems, reviews several examples in detail, and leads you through non-personalized recommendation using summary statistics and product associations, basic stereotype-based or demographic recommendations, and content-based filtering recommendations. After completing this course, you will be able to compute a variety of recommendations from datasets using basic spreadsheet tools, and if you complete the honors track you will also have programmed these recommendations using the open source LensKit recommender toolkit. In addition to detailed lectures and interactive exercises, this course features interviews with several leaders in research and practice on advanced topics and current directions in recommender systems....
Course2

Nearest Neighbor Collaborative Filtering

4.3
162 ratings
42 reviews
In this course, you will learn the fundamental techniques for making personalized recommendations through nearest-neighbor techniques. First you will learn user-user collaborative filtering, an algorithm that identifies other people with similar tastes to a target user and combines their ratings to make recommendations for that user. You will explore and implement variations of the user-user algorithm, and will explore the benefits and drawbacks of the general approach. Then you will learn the widely-practiced item-item collaborative filtering algorithm, which identifies global product associations from user ratings, but uses these product associations to provide personalized recommendations based on a user's own product ratings....
Course3

Recommender Systems: Evaluation and Metrics

4.3
116 ratings
19 reviews
In this course you will learn how to evaluate recommender systems. You will gain familiarity with several families of metrics, including ones to measure prediction accuracy, rank accuracy, decision-support, and other factors such as diversity, product coverage, and serendipity. You will learn how different metrics relate to different user goals and business goals. You will also learn how to rigorously conduct offline evaluations (i.e., how to prepare and sample data, and how to aggregate results). And you will learn about online (experimental) evaluation. At the completion of this course you will have the tools you need to compare different recommender system alternatives for a wide variety of uses....
Course4

Matrix Factorization and Advanced Techniques

4.3
99 ratings
16 reviews
In this course you will learn a variety of matrix factorization and hybrid machine learning techniques for recommender systems. Starting with basic matrix factorization, you will understand both the intuition and the practical details of building recommender systems based on reducing the dimensionality of the user-product preference space. Then you will learn about techniques that combine the strengths of different algorithms into powerful hybrid recommenders....

Instructors

Avatar

Joseph A Konstan

Distinguished McKnight Professor and Distinguished University Teaching Professor
Computer Science and Engineering
Avatar

Michael D. Ekstrand

Assistant Professor
Dept. of Computer Science, Boise State University

About University of Minnesota

The University of Minnesota is among the largest public research universities in the country, offering undergraduate, graduate, and professional students a multitude of opportunities for study and research. Located at the heart of one of the nation’s most vibrant, diverse metropolitan communities, students on the campuses in Minneapolis and St. Paul benefit from extensive partnerships with world-renowned health centers, international corporations, government agencies, and arts, nonprofit, and public service organizations....

Frequently Asked Questions

  • Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.

  • This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.

  • This Specialization doesn't carry university credit, but some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • Most learners should be able to complete the specialization in 20-26 weeks.

  • Basic statistics or college algebra, and an ability to work with spreadsheets. For the honors track, you should also be comfortable implementing software in Java.

  • While each component can be useful by itself, the courses do build on each other and should be taken in order.

  • You will understand and be able to apply the major families of recommender algorithms: non-personalized, product association, content-based, nearest-neighbor, and matrix factorization. You will know and be able to apply a variety of recommender metrics, and will be able to use this knowledge to match the correct recommender system to appplications.

  • The honors track is an optional track where learners add programming recommenders in the open source LensKit toolkit. You should be comfortable with basic data structures, algorithms, and Java to attempt the honors track.

  • This specialization is an extended and updated version of the two prior versions of Introduction to Recommender Systems that we've offered through Coursera. About 50% of the video and 80% of the assessment material are new, and there is an honors track with programming assignments (which existed in the first version of the course only, and have been re-done for this specialization). The Capstone is entirely new.

More questions? Visit the Learner Help Center.